
LLNL-CONF-414117

Visualizing LID AR in Google
Earth

M. Isenburg, J. Shewchuk

June 23, 2009

Geoinformatics 2009
Faifax, VA, United States
August 12, 2009 through August 14, 2009



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Visualizing LID AR in Google Earth
Martin Isenburg

Center for Adv anced Scienti�c Computation
Lawrence Li vermore National Laboratory

Jonathan Shewchuk
Computer Science Department

Uni versity of California at Berkeley

Abstract—W e describe a set of streaming tools that allow quick
visualization of large amounts of LID AR data in Google Earth.
We have found thesetools useful to rapidly understand and verify
the coverage of acquired data or to easily present this data to a
wider audience within a popular geospatial context.

Starting from raw LID AR �les we use a streaming geometry
processingpipeline to tur n millions or even billions of LID AR
points into tiled and georeferenced KML �les. The generated
KML �les can either contain elevation contours or image overlays
showing color-coded elevation or hillside-shaded terrain.

For Gilmer county, for example, we create a 10 by 8 tiling of
2000 meter tiles containing 10 meter contours in KML format.
We do this in only 20 minutes using less than 100 MB of main
memory and no temporary disk space on a houshold laptop
starting from 357 LAS �les that contain a total of 3GB of data
which representsa total of 156 million LID AR points.

All the tools described in this report including the full source
code are documented and available from the author' s website.

I . INTRODUCT ION

Modern air-borne laser-range scanning technology (LID AR)
allows collecting elevation samples for large areas.Low �ying
aircraft shoot up to 100,000 laser pulses per second onto the
earth's surface taking measurementsat resolutions of one point
per squaremeter and an accuracy of around 10 cm. LID AR
data is used in numerous applications: to assess�ood hazards,
plan solar and wind installations, perform tree inventories, aid
in power grid construction, etc. The amount of LID AR data
collected poses a signi�cant computational challenge as not
just million but billions of points need to be processed.
One common operation after obtaining LID AR data is

to generate derivatives such as elevation contours or digital
elevation maps. These may be the �nal product or they may
just be created to inspect coverage and verify correctness of
the data through cross-validation with an existing geospatial
context. However, processing of billions of points with conven-
tional tools (such as ArcGIS) requires breaking the data into
numerous small pieces. That this can be slow and cumbersome
became evident in the �rst large-scale LID AR campaign.
Under the NC Floodplain Mapping program, begun after

1999 Hurricane Floyd, all of North Carolina has been �own
with LID AR to map the �ood plains to assess risks, set
insurance premiums, and create disaster plans. The Raleigh
News & Observer reported in March 2002 that “the effort
to update �ood-plain maps across the state is running years
behind original projections, largely because the work is more
complex than �rst imagined. . . Of�cials had hoped to �nish
the job by this year, but now expect to complete it by
2007” [1]. As of today the task has not been completed.

In this paper we describe two streaming geometry process-
ing pipelines that are useful to generate elevation contours
and digital elevation maps from massive amounts of LID AR
points for subsequent visualization in Google Earth. Both
processing pipelines are based on our streaming Delaunay
triangulator that can triangulate billions points on a “household
laptop” [2] using very little memory. This method performs all
computations in a small memory buf fer and outputs results as
soon as possible to make room for more points to stream in.
The interlea ving of I/O and computation allows this software
to triangulate much larger LID AR point sets at much higher
speeds than current commercial products.

Fig. 1. Elevation contours derived from bare-earth LID AR data displayed
over Google Earth terrain of Gilmer county, WV (left). The hillside-shaded
digital elevation maps derived from �rst return LID AR data align perfectly
with the Google Earth imagery of Fitchburg Muncipal Airport, MA (right).

We have shown that the triangles that are streaming out of
our Delaunay triangulator can be directly processed, either by
immediately rasterizing them onto a digital elevation map [3]
or by immediately extracting elevation contours from them [4].
This allo ws implementations to work out-of-cor e making it
possible to process input data and to produce output data that
are much larger than the available main memory. We have
made these tools available on our website and the feedback
from the LID AR processing community has been positi ve—
“your tools have been far faster and much more reliable [than
ArcGIS]” to quote one typical testimonial.
In this paper we detail an extension of our streaming

pipelines [3] and [4] to output tilings of georeferenced ele-
vation contours and digital elevation maps in KML format so
they can directly be ingested into Google Earth for immediate
visualization within a popular geospatial context.

I I . OV ERV I EW

The beginning of our streaming pipeline is always the same:
The �rst module spatially �nalizes the point stream. Our



sp�nalize software adds �nalization tags to a stream of raw
LID AR points that mark the moment in which the speci�ed
cell of a recursively divided bounding box has “seen” all points
of the stream that fall into it. The second module Delaunay
triangulates the point stream while taking advantage of the
�nalization tags. Our sp2delaunay software uses the tags to
certify triangles as Delaunay, output them in a streaming mesh
format, and free up or rather re-use the memory they were
occuping. The exact workings of sp�nalize and spdelaunay2d
are detailed in an earlier paper [2]. The rest of the streaming
pipeline is dif ferent depending on whether we want to extract
elevation contours or rasterize digital elevation maps.

a) Extracting elevation contours: is done with a third
module that processes the triangles as they stream out of the
triangulator [4]. Our tin2iso software checks the elevations of
each of the triangle' s three vertices and outputs the requested
contour lines in a streaming line format. The fourth and �fth
modules are called slclean and slsimp and—as their names
suggests—clean and simplify the produced contours as they
are getting produced. The cleaning is done by removing tiny
closed contours that usually correspond to unwanted details
in the LID AR data. The simpli�cation is done by joining two
adjacent line segments into one whenever the area they enclose
falls under a user-de�ned threshold. The �nal module is called
sl2sl and it reads the cleaned and simpli�ed streaming lines
and tiles them into KML �les for display in Google Earth
using the georeferencing information the user provides.

b) Rasterizing digital elevation maps: is done with a
third module that rasterizes the triangles as they stream out of
the triangulator [3]. If the user requestedhillside-shaded terrain
our tin2dem software computes per-vertex normals while the
triangles stream in that are used to generate the correct shading
with respect to the speci�ed light direction. The rasterizer
writes the generated rasters to temporary �les based on the
tiling that was requested by the user. In a �nal pass over the
temporary �les it produces PNG, JPG, or TIF �les together
with KML �les that geo-reference the imagery in Google Earth
based on the projection information provided by the user.

I I I . STREA M ING M ESHES, POINTS, AND L I NES

Keeping points, triangles, and lines in streaming formats
is key to the ef�cienc y of our approach. It allows using
streaming algorithms for each processing task that can operate
on data much larger than the main memory. It also allo w using
simple commandline piping to stream data from one module
to the next. The operating system automatically allocates
the most processing time to the busiest modules and—when
available—can immediately take advantagesof multiple cores.
It also makes is possible to quickly recon�gure the processing
pipeline when more ef�cient or new modules become available
or when user demands are changing. For example, we can
plug our streaming simpli�cation software [5] between the
triangulator spdelaunay2d and the elevation contour extractor
tin2iso to coarsen the terrain before extracting the contours.
This can generate much higher quality simpli�cations of ele-
vation contours that are guaranteed to be self-intersection free.

This comes, however, at the expense of slower performance as
terrain simpli�cation is a fairly compute intensi ve operation.
Performing streaming operations on point data requires

spatial �nalization: space is partitioned into regions, and a
region is �nalized after the last point in the region appears in
the stream. In our pipeline we need spatially �nalized points
as input to our streaming Delaunay triangulator . In the ideal
case the input format from which we start processing already
contains some for of spatial �nalization. This would be true
if we were to request the points from a spatial database.
However, a typical use scenario for our tools starts with a
list of LID AR �les in LAS format. Here we need to compute
spatial �nalization with two additional passesover the points.
Isenburg and Lindstrom [5] describe a streaming format

for meshes: vertices and triangles are intermix ed, along with
vertex �nalization tags that indicate when all triangles refer-
encing this vertex have already appeared in the stream. This
topological �nalization of mesh vertices allows modules to
derive when, for example, the one-ring neighborhood around
a vertex has completely appeared in the stream such that tasks
that need data from such neighborhoods (e.g. computing vertex
normals) can be performed immediately . Finalization of vertex
tells the application that it can complete all computations that

were waiting for s topology , output partial results, and safely
free any data structures that are no longer needed.

Fig. 2. Elevation contours in 50 meter intervals for Mount St. Helen derived
from bare-earth LID AR data displayed over Google Earth terrain.

In our pipeline we produce triangulated terrain in a topolog-
ically �nalized streaming mesh format as output of our stream-
ing Delaunay triangulator so that we can, for example, on-the-
�y compute per-vertex normals that are needed for hillshading
shading the terrain. We also use this topological �nalization
in the format to extract elevation contours and output them
in a streaming line format. Similar to the streaming mesh
format, the streaming line format interleaves vertices and line
segments and includes tags that �nalize vertices that are have
“seen” all their line segments. Having topologically �nalized
lines can in turn be exploited for streaming topological clean-
up that removes connected components smaller than some



threshold. We only need to buf fer connected line segments that
have active vertices (i.e. vertices that are not yet �nalized) and
are below the threshold. Whenever all vertices of a component
are �nalized before the component reaches the threshold then
the entire component can be discarded. Whenever a component
reaches the threshold while still having active vertices we
can output it. An y future line segments that connect to this
component can then immediately be output as well.

IV. V I SUA L I Z ING EL EVAT ION CONTOURS

We now describe in detail our streaming pipeline for
extracting isocontours from LID AR data and storing them
as georeferenced KML �les for immediate visualization in
Google Earth. We do this using 156 million bare-earth LID AR
points from Gilmer county, West Virginia that are stored in
357 LAS �les that total 3GB as an example. In particular , we
describe the commandline that creates a 10 by 8 tiling of 2000
meter tiles containing 10 meter contours in KML format. The
entire process runs in only 20 minutes using less than 100
MB of main memory and no temporary disk space on a Dell
Inspiron 6000 laptop. The raw data and the commandline tools
are available can be found on the Web [6] for anyone wanting
to validate our results or wishing to experiment with their own
data. The resulting KML �les for Gilmer county as well as
several other examples are available there as well.

sp�nalize -i gilmer .�les -lof -ilas -level 8 -ospb
spdelaunay2d -ispb -osmb
tin2iso -ismb -range 200 450 10 -oslb
slclean -islb -oslb -length 5
slsimp -islb -oslb -area 0.7
sl2sl -islb -okml -utm 17S -ellipsoid 23

-tiling nllsxy gilmer 500000 4302000 2000 10 8

Fig. 3. The command line pipe that creates a 10 by 8 tiling of 2000 meter
tiles containing 10 meter contours in KML format from 156 million bare-earth
LID AR points of Gilmer county that total 3GB stored in 357 LAS �les.

The �rst module sp�nalize.exe reads the text �le
'gilmer .�les' -i gilmer.�les that contains a list to the locations
of 357 �les -lof that contain the LID AR points in LAS format
-ilas . The module �nalizes the points from these 357 �les onto
a 256x256 grid -level 8 and outputs them in a streaming binary
point format -ospb to the second module.
The second module spdelaunay2d.exe reads the �nalized

points in streaming binary format -ispb as they are produced
by the �nalizer and Delaunay triangulates them with our
streaming algorithm [2]. The module immediately starts to
output the triangulation in a binary streaming mesh format
-osmb and pipes it to the third module.
The third module tin2iso.exe reads the triangulation from

the binary streaming mesh format -ismb as it is produced by
the streaming triangulator , extracts elevation contours every 10
meters between 200 and 450 -range 200 450 10 and outputs
the resulting elevation contour lines in a binary streaming line
format -oslb to the fourth module.
The fourth module slclean.exe reads the contours in binary

streaming line format -islb as they are produced by the

extractor , discards all contours that are shorter than 5 meter
-length 5, and starts outputting others as soon as their length
is determined as being above the cutof f of 5 meters in a binary
streaming line format -oslb to the �fth module.
The �fth module slsimp.exe reads the contours in binary

streaming line format -islb as they are output by the cleaner,
removes all 'bumps' (i.e. pairs of two subsequent line seg-
ments) that are less than 0.7 squaremeter in area -area 0.7, and
outputs the simpli�ed elevation contours in a binary streaming
line format -oslb to the sixth module.
The sixth module sl2sl.exe reads the contours in binary

streaming line format -islb as output by the simpli�er and
tiles them into by separate �les
called 'gilmer 00x 00y.kml' with being
the lower left corner of the tiling and with each tile being 2000
meters long and wide -tiling nllsxy gilmer 500000 4302000
2000 10 8; each tile is stored in Google's KML format -
okml . Because KML uses longitude and latitude in degrees
and elevation in meter we to convert the LID AR data to a
correctly georeferenced representation. Since the LID AR data
was in UTM format and we need to specify the UTM zone
-utm 17S and the ellipsoid WGS-84 -ellipsoid 23.

Fig. 4. Hillside-shaded digital elevation maps of Baisman Run in Baltimore
County derived from bare-earth LID AR data displayed side by side with
Google Earth terrain imagery. It is as if one can “see” through the canopy.

Because our elevation data is much more precise than the
terrain data used by Google Earth our elevation contours do
not align perfectly with the terrain (see Fig. 1). The lower
resolution ravines in Google Earth are less deep,so our isolines
run below the terrain, while the ridges in GE are less tall,
so our isolines �oat above the terrain. When we started this
project we noticed that the elevation of Google Earth terrain
for Mount Saint Helens (see Fig. 2) did not at all match the
contours around the lava dome that is inside the crater. That
was because this lava dome had grown by about 330 feet in
2004 and Google Earth had still been using elevation data
from the Shuttle Radar Topography Mission of 2000. In the



meantime their elevations have been updated with newer data
of higher resolution and our contours align well.

V. CREAT I NG D I GI TA L EL EVAT ION M A PS

We now describe our streaming pipeline for deriving either
hillside-shaded or elevation color -coded digital elevation maps
from LID AR data and storing them asa tiling of georeferenced
KML �les for immediate visualization in Google Earth.

sp�nalize -i gilmer .�les -lof -ilas -level 8 -ospb
spdelaunay2d -ispb -osmb
tin2dem -ismb -opng -zone 17S -ellipse 23 -step 5

-tiling ns gilmer 2500 -ll 500000 4302000

Fig. 5. The command line pipe that creates a tiling of 2500 meter tiles
containing hillside-shaded DEM in PNG format together with a KML �le
that correctly georeferences the tiled imagery within Google Earth.

The �rst module sp�nalize.exe and the second module
spdelaunay2d.exe operate exactly as described in the last sec-
tion and pipe triangulated LID AR points in binary streaming
mesh format to the third module.
The third module tin2dem.exe reads the triangulation from

the binary streaming mesh format -ismb, and rasters it with
hillside shading into PNG �les -opng with a step size of 5
meter per pix el -step 5 creating a tiling with 2500 meter tiles
(giving us image tiles of 500 by 500 pix els) that is called
'gilmer' -tiling ns gilmer 2500 starting at the lower left corner
with coordinates (500000,4302000) -ll 500000 4302000.

V I . D I SCUSSION

Our streaming geometry processing pipelines are a fast
way to derive elevation contours and digital elevation maps
from large amounts of LID AR data. Because the computation
is streaming and data-driven our method scales to gigantic
inputs and outputs: we can process gigabytes of data equaling
billions of LID AR points on a household laptop [3]. We have
described how to extend these processing pipelines to directly
turn LID AR points into geo-referenced Google Earth tilings
for immediate preview or distrib ution to a wider audience.
The ability to view LID AR data within the powerful visual-

ization platform provided by Google Earth allows for interest-
ing insights, as the data suddenly presents itself surrounded by
a geospatial context that is annotated by a multitude of users
and providers. For example, we had been experimenting with
a data �le called “Serpent Mound.las” for quite some time,
but it was not until we viewed the corresponding DEM within
Google Earth that we actually noticed the serpent. Several
geospatial tags were pointing out the presence of “The Great
Serpent Mound”, a 1,330-foot-long, three-foot-high prehistoric
ef�gy mound located on a plateau of the Serpent Mound crater
along Ohio Brush Creek in Adams County , Ohio. The serpent
is the largest ef�gy earthwork in the world and it appears
nowhere as crisp and beautiful as in the hillside-shaded DEM
that we derived from bare-earth LID AR (see Fig. 6).
Another interesting variation is to use Google Maps instead

of Google Earth for displaying the derived elevation contours.
In Fig. 7 we show an example of downtown Toronto for

Fig. 6. Our hillside-shaded digital elevation map clearly exposes “The Great
Serpent Mound” that is hidden under the canopy in the Google Earth imagery.

contours derived from �rst return LID AR data. In this case
the elevation contours are giving us exact and georeferenced
footprints of the buildings from that part of the map.

Fig. 7. The elevation contours derived from �rst return LID AR data of
downtown Toronto are displayed as an overlay in Google Maps. This puts the
footprint of various famous buildings at their exact locations on the map.

The authors would lik e to thank everybody who has down-
loaded our tools and sent suggestions and/or bug reports.

REFERENCES

[1] M. Quillin, “Flood plain maps better, but late – years late,” March 11
2002, raleigh News & Observer.

[2] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink, “Streaming computa-
tion of Delaunay triangulations,” in Proceedings of SIGGRAPH'06 , 2006,
pp. 1049–1056.

[3] M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion, “Gener-
ating raster DEM from masspoints via TIN streaming,” in GIScience'06
Conference Proceedings, 2006, pp. 186–198.

[4] M. Isenburg, Y. Liu, and J. Snoeyink, “Streaming extraction of elevation
contours from lidar points,” in manuscript , 2006.

[5] M. Isenburg and P. Lindstrom, “Streaming meshes,” in Visualization'05
Proceedings, 2005, pp. 231–238.

[6] M. Isenburg and J. Shewchuk, “V isualizing lidar in google earth,” in
http://www .cs.unc.edu/˜ isenburg/googleearth/ .

nijhuis2
Text Box
This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.




